

Spark - What is it, and how does it use Bureau weather data.

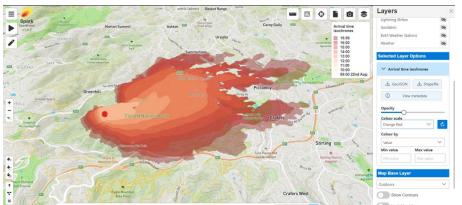
A real-world application

DATE

Sept 2024

PRESENTER

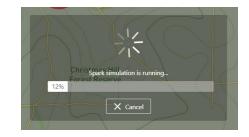
Chantelle O'Brien - AFAC - Bushfire Systems Specialist

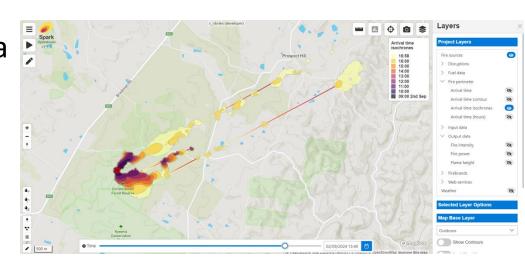


Output data

Lock Map View

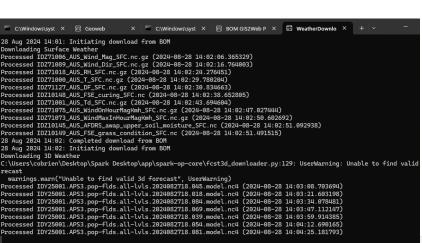
- Collaborative project between CSIRO and AFAC
- Fire simulation tool
- Uses fuel load, fuel age, topography, road network, weather data
- Data sensitivities
- Adapted AFDRS fire behaviour models
- Sub models simulate plume and firebrand generation

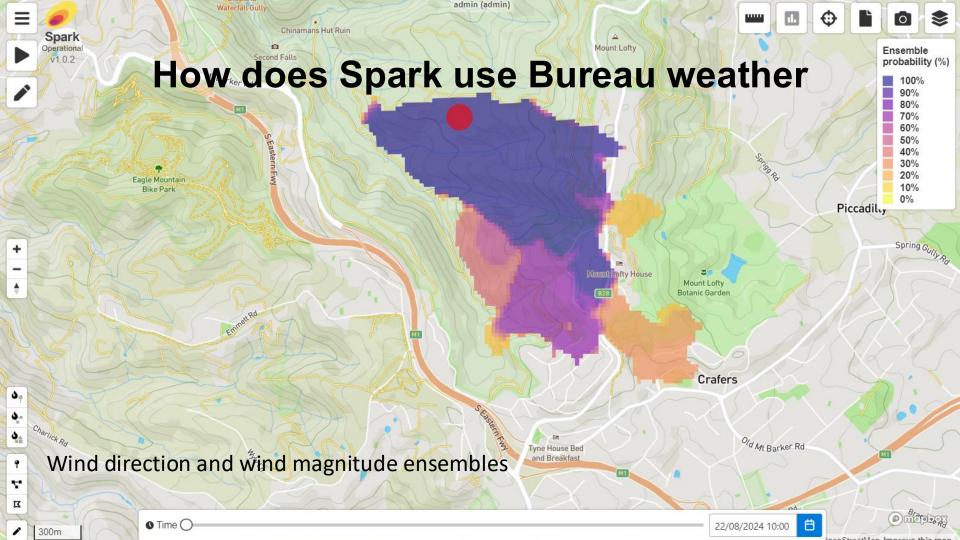




What is Spark

- Different to weather model (ACCESS Fire)
- Time to run
- Computer/server types
- Differences in spatial data resolutions (Spark can be 30m, ACCESS C 1.5 km, GFE 6km)
- Need high resolution for simulations

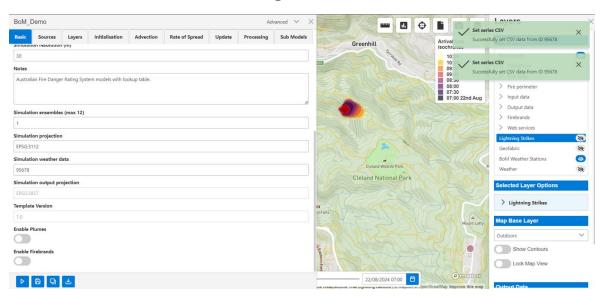




How does Spark use Bureau weather

- Gridded surface weather ADFD via FTP
- 3D weather parameters
- CSIRO developed 'weather downloader'

	BoM_I	BoM_Demo								Advanced			
	Basic	Source	s Layers	Initialisation	Advection	Rate of Sp	pread	Update	Processing	Sub Mod	els		
	Input L	ayers	Input Vectors	Gridded Lay	vers Outpu	t Layers Va	ariables						
	Gridded	Layers											
	Name			Source				Proje	ction	Ту	pe	Scale	Offset
BoM_Demo	Winds	OnHourMa	gKmh_SFC	./data/adfd/IDZ7	1075_AUS_Wind	iOnHourMagKm	nh_SFC.nc	EPS	5:4326	v	vind_magnitude	1.5	0
irebrands Plumes	orands Plumes Wind_Dir_SFC			/data/adfd/IDZ71089_AUS_Wind_Dir_SFC.nc				EPSG:4326		v	vind_direction	1	0
lame	T_SFC RH_SFC			_/data/adfd/lDZ71000_AUS_T_SFC.nc _/data/adfd/lDZ71018_AUS_RH_SFC.nc				EPSG:4326 EPSG:4326		t	emperature	2.5	0
z										n	elative_humidity	0.2	0
	grass	curing		_/data/adfd/IDZ1	0148_AUS_FSE_0	curing_SFC.nc		EPS	5:4326	c	uring	5	0
ode													
1 // Vertical position (eq. 3.9) 2 REAL du = Nu/N; 3 REAL du = Nu/N; 4 REAL Usc = Nu/N; 5 return du/Usc; 7	DF_SF ⊙ Add		o Gridded Layer	./data/adfd/IDZ7	71127_AUS_DF_S	FC.nc		EPS	G:4326	d	rought_factor	2	0
1 // Vertical position (eq. 3.9) 2 REAL du = Nu/M; 3 REAL du = Nu/M; 4 REAL Usc = Nypot(Us+du, dw); 5 c return du/Usc; 7 6			o Gridded Layer		1127_AUS_DF_S	FC.nc		EPSO	G:4326	d	rought_factor	2	0
1 // Vertical position (eq. 3.9) 2 RBAL du - Nu/Nij 3 RBAL du - Nu/Nij 4 RBAL Us: - Nypo(Va+du, dw); 5 7 7 6 return dw/Usc; 0 Add element to Plume models			o Gridded Layer		1127_AUS_DF_S	FC.nc		EPS0	G:4326	d	lrought_factor	2	0
1 // Vertical position (eq. 3.9) 2 REAL du = Nu/N; 3 REAL du = Nu/N; 4 REAL du = Nu/N; 5 return du/Usc; 7 7 0 Add element to Plume models			o Gridded Layer		71127_AUS_DF_S	FC.nc		EPS	5:4326	d	rought_factor	2	o
1 // Vertical position (eq. 3.9) 2 #RAI du = Nu/m; 3 #RAI du = Nu/m; 4 #RAI Usc = Nypet(Usedu, du); 5 7 7 8 Add element to Plume models 1 // Set u 2 u = Use(Pu/m);	• Add	element to			71127_AUS_DF_S	FC.nc		EPS	5:4326	d	rought, factor	2	0
1 // Vertical position (eq. 3.9) 2 #884 da - Ne/9 3 #884 da - Ne/9 3 #884. da - Ne/9 5 #884. da - Ne/9 6 #884. da - Ne/9 6 #884. da - Ne/9 7 7 8	• Add				71127_AUS_DF_S	FC.nc		EPS	5:4326	d	rought_factor	2	0
1 // Vertical position (eq. 3.9) 2 RAAL dw = Nw/N; 3 REAL dw = Nw/N; 4 REAL Use = Nypet(Uardu, dw); 5 6 return dw/Usc; 7 7 7 8 Add element to Plume models 9 pdate model 1	• Add	element to			11127_AUS_DF_5	FCnc		EPS	3:4326	d	rought_factor	2	0
1 // Vertical position (eq. 3.9) 2 RBAL du = Nu/N) 3 RBAL du = Nu/N) 5 REAL du = Nu/N) 6 Peturn du/Usc; 7 8 8 O Add element to Plume models podate model 1 // Set u 2 u = Use(*IbL/N); 3 4 // Set w 5 w = Nu/N; 6 // Gaussian conversion factor 7 // Gaussian conversion factor 6 const RBAL gauss = 2.6;	• Add	element to			11127_AU\$_DF_S	FCnc		EPS	5-4326	d	rought,factor	2	0
1 // Vertical position (eq. 3.9) 2 REAI du = Nu/N; 3 REAL du = Nu/N; 4 REAL du = Nu/N; 5 return du/Usc; 7 Add element to Plume models pdate model 1 // Set u 2 u = Use(nu/N); 3 4 // Set u 3 // Set u 7 // Gaussian conversion factor const REAL gauss = 2.6;	• Add	element to			11127_AU\$_DF_S	FCnc		EPS	5/4326	d	rought, factor	2	0
1 // Vertical position (eq. 3.9) 2 MBAL du = Nu/m) 3 RBAL du = Nu/m) 4 RBAL du = Nu/m) 5 return du/Usc; 7 7 Add element to Plume models 1 // Set u 2 u = Use/mu/m); 3 4 // Set w 5 u = Nu/m; 5 // Gaussian conversion factor 2 const RBAL gauss = 2.6;	• Add	element to			11127_AUS_DF_S	FC.nc		EPS6	5:4326	ď	rought,factor	2	0
1 // Vertical position (eq. 3.9) 2 REA du = Nu/Ni; 3 REAL du = Nu/Ni; 4 REAL Us = Nu/Ni; 5 return du/Usc; 7 return du/Usc; O Add element to Plume models plate model 1 // Set u 2 u = Use(Nu/Ni); 3 4 // Set u 5 u = Nu/Ni; 6 7 // Gaussian conversion factor 6 7 // Gaussian conversion factor 7 // Gaussian conversion factor 8 const REAL gauss = 1.6; 8 // Caussian conversion factor	• Add	element to			11127_AUS_DF_S	FC.nc		EPSA	5:4326	ď	rought,factor	2	0
1 // Vertical position (eq. 3.9) 2 REAL da = Nu/m) 3 REAL da = Nu/m) 4 REAL da = Nu/m) 6 Pate that da = Nu/m 7 return da/Usc; 7 8 8 O Add element to Plume models polate model 1 // Set u 2 u = Usa-(nu/m); 3 4 // Set u 5 v = Nu/m, 6 // Gaussian conversion factor 8 const REAL gauss = 2.6; 9	• Add	element to			11127_AU\$_DF_S	FCnc		EPSA	5:4326	d	rought,factor	2	0



AWS observations

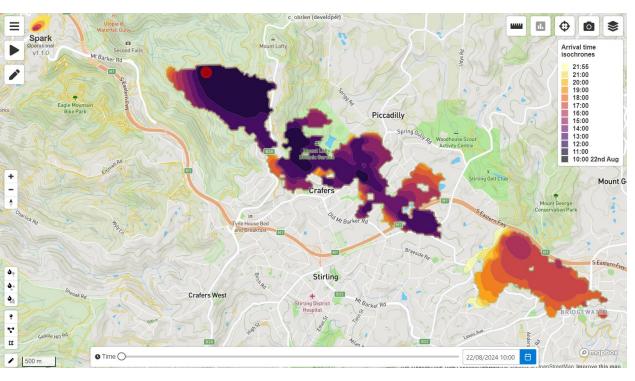
Spark can use AWS point observations to do hindcasting simulations

- if runs beyond observations, will fill with gridded forecast

Weather manipulation

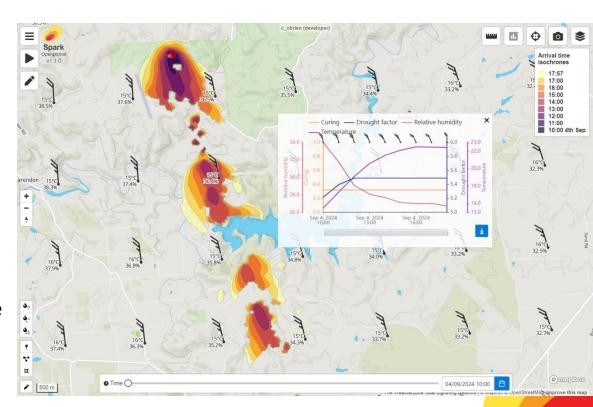
BoM_Demo									
Basic Sources Layer	Initialisation Advection Rate of Spread	Update Processing S	Sub Models						
Input Layers Input Vecto	rs Gridded Layers Output Layers Variables								
Gridded Layers									
Name	Source	Projection	Туре	Scale	Offset				
WindOnHourMagKmh_SFC	OnHourMagKmh_SFC ./data/adfd/IDZ71075_AUS_WindOnHourMagKmh_SFC.nc		wind_magnitude	1.5	0				
Wind_Dir_SFC	./data/adfd/IDZ71089_AUS_Wind_Dir_SFC.nc	EPSG:4326	wind_direction	1	0				
T_SFC	./data/adfd/IDZ71000_AUS_T_SFC.nc	EPSG:4326	temperature	2.5	0				
RH_SFC	FC		relative_humidity	0.2	0				
grass_curing	./data/adfd/IDZ10148_AUS_FSE_curing_SFC.nc		curing	5	0				
DF_SFC	./data/adfd/IDZ71127_AUS_DF_SFC.nc		drought_factor	2	0				
Add element to Gridded Lav	ers								

If forecast weather isn't matching on ground observations or AWS observations, weather inputs can be manipulated.


Scale and offset Editing of csv and xml files

Current challenges

- Ease of access of Bureau weather – CSIRO built downloader
- NetCDF format
- Historical and realtime datasets different
- ADFD grids are overwritten 5 times a day
- Gridded weather 6km grid –
 lack of local effects
- IWF ingestion currently only receive as a PDF – electronic aren't distributed



Future Opportunities

- World leading in fire simulation
- Test with winds at 300 or 100m resolution using high resolution ACCESS
- Test with ACCESS Fire with spotting combine ACCESS Fire with Spark spotting simulation model
- Jeff Kepert's parametric Ember Transport scheme
- Compare with satellite data for real time verification
- Potential for forecast demo collaboration project
- Real time collaboration using satellite data, mobile radar data which enables real time verification of fire perimeters

Thank you

